A new rank parity computing machine

Holly Green

University College London

August 16th, 2022

Theorem (Constantinou, Dokchitser, Green, Morgan)

Assume# X is nite. For all smooth, projective curves over numbeX = x rank(Jac_X = K) X (X = K_v) mod 2

where 2 f Q, 1g is an explicit invariant computed from curves over local elds.

Work in progress theorem (Dokchitser, Green, Morgan)

Assume# X is nite. The Birch and Swinnerton-Dyer conjecture correctly predicts th of rank(Jac_X=K) for all nice hyperelliptic curves over numberX =Kds

Theorem (Green, Maistret = 2 and E has CM)

The p-parity conjecture holds for elliptic curves over totally real number elds.

BSD and the parity conjecture

Birch and Swinnerton-Dyer conject

 $rank(Jac_X) = ord_{=1}L(Jac_X; s)$

Conjectural functional equation

$$L(Jac_X; s) = w(Jac_X)L(Jac_X; 2 s)$$

The Parity Conjecture

Let K be a number eld anXa=K a curve. Then

(1)^{rank(Jac_X=K)}

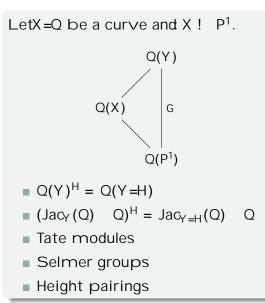
+

LetE=K be a semistable elliptic curve. Assuming BSD, orX niteness of

rank(E=K) #fvj1g + #fv-1, E=K_v split multiplicgtived 2

E=Q

Ingredient 1 for the parity computing machine: eld diagrams



Example
LetE :
$$y^2 = x^3 + ax^2 + bx$$
 and : E ! P¹;
(x; y) 7! x:
 $K({}^p \overline{x}; {}^p \overline{x^2 + ax + b})$
 $Y: u^2 = v^4 + av^2 + b$
 $K({}^p \overline{x})$
 $K({}^p \overline{x^3 + ax^2 + bx})$
 $K({}^p \overline{x^2 + ax + b})$
 $V^2 = x$
 $K:= Q(x)$

Ingredient 2 for the parity computing machine: Brauer relations

LetG be a nite group.

The parity computing machine

Theorem (Constantinou, Dokchitser, Green, Morgan)

Let Y =Q be smooth, projective such $\#hXit_{Jac_{Y}}[^{1}]$ is nite. AssumeY ! P¹ is a Galois coverand let = ${}_{i}H_{i} = {}_{i}H_{i} = {}_{i}H_{j}^{0}$ be a Brauer relation for its Galois grobups ord ${}_{0}Q_{j}^{i}\frac{Reg_{Jac_{Y}=H_{i}}}{r}A_{j}Reg_{Jac_{Y}=H_{j}^{0}}A_{v}$ (Y =Q_v) mod 2 where is an expression irrand local data for =Q_v.

Example

We recover local formulae for:

- E admitting a cyclicsogeny (Cassels), (K)[`] & f Og then D₂
- Jac_x forX hyperelliptic over quadratic extensions (Kramer, Tunnel©_Morgan)
- Jacx forX of genus 2 with a Richelot isogeny (Dokchitser, Maistret),
- Jac_x forX of genus 3 such the tacts on Jac[2] by a 2-group (Docking).

Theorem (Constantinou, Dokchitser, Green, Morgan)

Thank you for your attention!